
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Kruzik, Martin]
On: 23 August 2010
Access details: Access Details: [subscription number 925633152]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Philosophical Magazine
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713695589

Crystal plasticity model of shear and kink bands-energetic approach
Jan Kratochvíla; Martin Kružíkab; Radan Sedláčekc

a Department of Physics, Faculty of Civil Engineering, Czech Technical University, 166 29 Prague,
Czech Republic b Institute of Information Theory and Automation of the ASCR, 182 08 Prague, Czech
Republic c Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Fakultät für Maschinenwesen,
Technische Universität München, 85747 Garching, Germany

First published on: 14 May 2010

To cite this Article Kratochvíl, Jan , Kružík, Martin and Sedláček, Radan(2010) 'Crystal plasticity model of shear and kink
bands-energetic approach', Philosophical Magazine, 90: 27, 3729 — 3742, First published on: 14 May 2010 (iFirst)
To link to this Article: DOI: 10.1080/14786430903449411
URL: http://dx.doi.org/10.1080/14786430903449411

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713695589
http://dx.doi.org/10.1080/14786430903449411
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Philosophical Magazine
Vol. 90, Nos. 27–28, 21–28 September 2010, 3729–3742

Crystal plasticity model of shear and kink

bands – energetic approach

Jan Kratochvı́la, Martin Kružı́kab* and Radan Sedláčekcy
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We present a continuum crystal plasticity model of a lamellar deformation
substructure of shear and kink bands. An evolutionary problem for the
development of a spontaneous structural inhomogeneity is formulated in
the framework of energetic solutions. Conti and Theil proved that in the
case of an isothermal single-slip crystal, rigid plasticity with no hardening
lamellaea form an optimal microstructure. Moreover, their model predicts
the existence of a boundary layer which accommodates the lamellar
substructure to displacement boundary conditions. It is suggested that the
width of the shear and kink bands is a compromise: the minimization of
bulk energy tends to decrease their size, while the energy of the band
interfaces or the inner structure of the bands opposes this tendency.

Keywords: crystal plasticity; energetic approach; plastic deformation;
plasticity of crystals

1. Introduction

Spontaneous structural inhomogeneity is the most distinguished mesoscopic feature
of plastic deformation of ductile crystalline materials. The inhomogeneity is
characterized by the formation of heterogeneous dislocation distributions such as
tangles, veins, walls and cells, and localization of the plastic deformation in
deformation bands. The evolution of deformation-induced long-range internal
stresses and increasing lattice plane misorientation are characteristic features of the
evolving dislocation pattern.

Detailed microscopic and X-ray observations on copper single crystals subjected
to uniaxial tensile or cyclic deformation have been reviewed in the recent papers by
Mughrabi et al. [1–3]. In the crystals oriented for single slip, early formed tangles in
tension and veins in cycling consist mainly of edge dipolar loops. The loops are
leftovers of glide dislocations partially annihilated by cross-slip. In later stages of
cycling at a sufficiently high amplitude the deformation becomes localized into shear
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bands, called persistent slip bands (PSBs). PSBs are parallel to the slip plane and

have a specific inner structure of walls and channels. The walls consist mainly of

primary edge dipolar loops and serve as dislocation generation and annihilation
centers. In the case of tension oriented for single slip the tangles are characteristic of

the first stage of hardening. At the beginning of the second stage a secondary slip

system is activated and a layer-like dislocation network of so-called grids (sheets)

becomes one of the dominant dislocation patterns. The grids lie roughly parallel to
the primary slip plane and consist of primary and secondary dislocations and their

reaction products. As the shear deformation in the second stage is carried mainly by

the primary dislocations, it can be treated as single slip.
The microstructures mentioned above are accompanied by kink bands oriented

perpendicularly to the primary slip plane as seen in the scheme shown in Figure 1,

which is a slight modification of the picture proposed by Mughrabi and Obst [1]. The

kink walls have pronounced tilt misorientations around an axis that corresponds

roughly to the line direction of the primary edge dislocations. The misorientation
increases with deformation and reaches values less than 1�. The misorientations

observed after cycling are always much smaller than those found after tensile

deformation. The wavelength of the misorientation related to kink bands is an order

of magnitude larger than the distances between the tangles, PSB walls or the widths
of PSB and of the grid layers. These distances are typically of order mm on the other

hand the kink walls have been found to be spaced between about 100 mm and 20 mm
early and late in stage II of hardening [1]. In [3], p. 4047, Mughrabi states: ‘in view of

rather short dislocation glide paths in cyclic deformation, it is at present unclear how
such subtle details with rather long-range periodicities develop in the dislocation

pattern’. The observations raise other questions as well: Why are lamellar structures

formed? What are the conditions of their formation? What determines their
periodicity? In our opinion these questions can be answered, at least partly, within

the framework of continuum crystal plasticity. The collective behavior of

dislocations enters this framework trough hardening coefficients and through the

inner structure of the lamellae and the energy of their boundaries.
The continuum model of a rate-independent, rigid-plastic crystal deformed by

single slip is recalled in Section 2. As shown in Section 3 the energetic approach leads

to the problem of the minimization of an energy functional subjected to boundary

conditions and dissipation inequality. The minimization may result in spontaneous

structural inhomogeneity. The exact mathematical proof of the existence of lamellar

Figure 1. Scheme of shear and kink bands. A microphotograph of such structures can be
found, e.g. in [1], Figure 4.
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structures was given by Conti and Theil [4] for a single-slip rigid-plastic model with
zero hardening, i.e. elastic deformation is reduced to lattice rotations and the
hardening coefficient h¼ 0. Moreover, they predicted the existence of a boundary
layer which accommodates the lamellar structure to displacement boundary
conditions. Their results indicate that the dominant effect, which causes formation
of the lamellar structure, is the minimization of the dissipative energy (the rigidity
excludes the elastic energy and h¼ 0 causes no change of the dislocation stored
energy). However, the rigid-plastic model exhibits an unwanted property: the lowest
dissipative energy is reached for the lamellae of zero width. As indicated in the last
section, the interface energy of the lamella boundaries or the energy needed to build
an inner lamella structure suppress this tendency. The lamella structure periodicity is
a compromise between these two tendencies.

2. Crystal plasticity

The crystal plasticity equations were introduced in classical papers, e.g. [5,6]. Here,
the rigid-plastic approximation to the kinematics of isothermal crystal plasticity is
considered. The constitutive assumption adopted in the present paper is a rate-
independent single slip.

Each material point can be identified by its position in a reference configuration.
The point which was at position X in the reference configuration is in the current
configuration at time t in the position x(X, t). The difference u¼ x�X is the
displacement of the material point X. The deformation of the material is described by
the transformation F of an infinitesimal material fiber from the reference to the
current configuration,

dx ¼ F dX: ð1Þ

Assuming that x(X, t) is a continuous and differentiable vector field, this transfor-
mation can be introduced as the deformation gradient F¼ @x/@X¼ Iþ @u/@X, where I
is the second-order identity tensor. In the rigid-plastic approximation the crystal
lattice can (rigidly) rotate but it is not (elastically) strained. The plastic deformation
of a crystal can be decomposed into two steps. First, the material flows through the
crystal lattice by shearing along the active slip system to reach an intermediate
configuration. This step is described by the plastic deformation gradient Fp,
detFp

¼ 1. Second, the plastic deformation Fp is followed by a rigid rotation R of the
lattice representing the elastic part of the deformation gradient. The corresponding
decomposition reads

F ¼ RF p, ð2Þ

hence, detF¼ 1. The plastic deformation gradient Fp transforms the reference
configuration into the lattice (intermediate) configuration, R transforms the lattice
configuration to the current configuration, and F transforms the reference config-
uration into the current configuration.

Unlike F, the tensors Fp and R do not generally correspond to the gradient of a
vector field, i.e. they may be individually incompatible. In the case of inhomogeneous
plastic deformation Fp, the lattice rotation R can re-establish the compatibility of the
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overall material deformation. The density of geometrically necessary dislocations

(GNDs) required for the material to be compatible can be characterized by the GND

density tensor ,¼RT curl(RT); an overview and analysis of various measures of the

GND density is given in [7].
The velocity v of a material point is given by the material time derivative of its

position, vðx, tÞ ¼ _xðX, tÞ. Now we perform the time derivative of Equation (1),

d _x ¼ _F dX ¼
@vðx, tÞ

@X
dX ¼

@v

@x
FF�1dx ¼ Ldx, ð3Þ

where Lðx, tÞ ¼ _FF�1 ¼ @v=@x is the velocity gradient. Using Equation (2), the latter

can be decomposed1 as

L ¼ L p þ _RRT, ð4Þ

where Lp is the rate of plastic distortion in the current configuration and _RRT is the

lattice spin.
The motion of glide dislocations carrying plastic flow takes place on a prescribed

slip system. The slip system is defined in the lattice configuration by the orthonormal

unit vectors s in the direction of slip and the normal to the slip plane m, where

s �m¼ 0. In the lattice configuration the vectors s and m are constant, given by the

crystallographic structure. The plastic flow manifests itself in the requirement that

the evolution of Fp be governed by the slip rate _�ðX, tÞ on the slip system via the

flow rule

_Fp ¼ L pF p, L p ¼ _�s�m: ð5Þ

Assuming that Fp
¼ I initially, the flow rule (5) and the identities (s�m)�(m� s)¼ 1

and (s�m)�(s�m)¼ 0 yield

F p ¼ Iþ �s�m, � ¼ 0 initially: ð6Þ

Hence, the admissible deformation gradient F has to be of the form

F ¼ RðIþ �s�mÞ: ð7Þ

From the last equation it follows that

� ¼ ðFmÞ � ðFsÞ: ð8Þ

The slip � in the slip system in the current configuration is driven by the resolved

shear stress �,

� ¼ Rs � ðTRmÞ, ð9Þ

where T is the Cauchy stress tensor and Rs and Rm represent the slip direction and

the normal to the slip plane in the current configuration, which rotates rigidly with

the lattice. In a quasi-static process with no body forces the stress T has to satisfy the

equilibrium equation

divT ¼ 0: ð10Þ
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Within the present mechanical framework the second law of thermodynamics is

reduced to the requirement that the plastic dissipation be non-negative,

� _� � 0: ð11Þ

Constitutive relations of the rate-independent rigid-plastic material are represented

by the yield condition,

_�4 0, only if � ¼ �y,

_�5 0, only if � ¼ ��y,
ð12Þ

if j�j5�y, the rate _� ¼ 0. The critical resolved shear stress �y(x, t)� 0 represents local

dissipative internal forces that oppose slip. In a rate-independent material, �� �y.
The evolution equation for �y is

_�y ¼ hj _�j, ð13Þ

where the hardening coefficient h is taken as a material parameter. The hardening

coefficient h is generally a function of variables which may themselves be controlled

by evolution equations. In the present context it seems that such variables are �y
and ,. A higher level of the resolved shear stress �y promotes dislocation

annihilation, hence, it may decrease the value of the hardening coefficient h;

arrangements of GNDs described by the density tensor , can serve as favorable

centers of generation and annihilation of dislocations. However, in the next section

the energetic formulation is analyzed for the case of zero hardening, h¼ 0, only.

3. Energetic formulation

The shearing of a rigid-plastic crystal deformed by single slip is treated as a plane

strain problem; we employed the results derived for two-dimensional energetic

models. For the energetic solution it is convenient to formulate a power balance for

the considered crystal plasticity model in the reference configuration, see [8]. The

quasi-static stress equilibrium (10) in the reference configuration is

DivTref ¼ 0, ð14Þ

where Div means divergence with respect to the position vector X in the reference

configuration and in the rigid-plastic model Tref¼TF�T. Multiplying Equation (14)

by the velocity v yields DivTref � v¼ 0¼Div(Trefv)�Tref � rv. Using the divergence

theorem, the integration over the body � in the reference configuration with the

boundary @� provides the power balanceZ
�

Tref �
_F dV ¼

Z
@�

Trefn � vdA, ð15Þ

where n is the unit outer normal to @�. From the kinematical relations (3)–(5) and

the resolved shear stress (9) we get

Tref �
_F ¼ � _�: ð16Þ
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From (15) and the latter equation the power balance can be expressed in the formZ
�

� _� dV ¼

Z
@�

Tref n � v dA: ð17Þ

We assume that the velocity v¼ v0 is prescribed on a part @�v of the boundary and
the stress Tref on the complementary part @�T.

Considering Equation (17) for the velocity v and the incremental velocity vþ �v
which both obey the boundary condition on @�v, and subtracting these two
equations, one gets a weak formulation of the boundary value problemZ

�

�� _� dV�

Z
@�T

Tref n � �v dA ¼ 0: ð18Þ

The relation (18) can be understood as a condition for an extremum of an energy
functional. If a displacement is prescribed on the whole boundary @� or if the
complementary part @�T is stress free, the surface integral in (18) disappears. Such
boundary conditions are typical for standard strain controlled tensile and cycling
experiments.

For the considered model the problem of the specification of the energy
functional and a method of determination of its minimum represented by a lamellar
structure has been analyzed in [4] under the restrictive assumption that the hardening
coefficient in Equation (13) is h¼ 0, i.e. there is no hardening, and the critical
resolved shear stress �y40 is constant (the results obtained for the case h 6¼ 0 are
commented on in the Remark at the end of this section). For h¼ 0 and a zero surface
integral the boundary value problem (18), where the yield condition (12) is
incorporated, is reduced to Z

�

�yj� _�jdV ¼ 0: ð19Þ

Now we recall the results of the analysis given in Conti and Theil [4]. They
demonstrated rigorously that the model predicts the formation of a lamellar
structure as the lowest energy microstructure formed. The mathematical proofs and
the relevant references can be found in their paper [4]. For the energetic approach
developed in a general context in [9,10], it is typical to formulate the minimization
problem in an incremental way [4] by considering a discretization of the time interval
[0,T ] of the deformation process, 0¼ t05t15t2� � �5tN¼T. The minimization
problem (19) is modified to: given the state [x(tk), �(tk)] at time tk we look for the
position vector x and the slip strain � at time tkþ 1. These are found as a minimizer of
the incremental functional

Ikðx, �Þ ¼

Z
�

�ð _� ��ðtkÞ, v, �, xÞdV, ð20Þ

where the dissipation function � is defined as

�ð _�, v, �, xÞ ¼
�yj _�j if F ¼ RðIþ �s�mÞ,

þ1 otherwise,

�
ð21Þ

and �y is constant.
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The infinity in formula (21) guarantees in a formal way that the lattice strain

is negligible. The latter corresponds to the assumption that the elastic energy is

infinite whenever the elastic part of the deformation gradient F is not a lattice
rotation.

In summary, we are looking for a position vector field x(X, t) of the body �

which satisfies: (i) the kinematical rigid-plastic restriction rx¼R(Iþ �s�m); (ii) the
displacement boundary conditions at @�v; and (iii) it minimizes the incremental

functional Ik. Due to (6) the time integration in (20) can be evaluated and the slip �
can be expressed through F using (8), hence, the problem can be implicitly

formulated as the minimization in terms of the position vector field x. As Ik can be
explicitly constructed, the discretization (20) may be reduced to a single time interval

[t0, t]. Knowing x at time t0 we denote its gradient F0¼rx(t0)¼R0(Iþ �0s�m) for

the rotation R0¼R(t0) and slip �0¼ �(t0) and the incremental problem (20) and (21)
then becomes

JðxÞ ¼

Z
�

WepðF;F0ÞdV, ð22Þ

where Wep is the energy density

WepðF;F0Þ ¼
�yj�ðF Þ � �ðF0Þj if F ¼ RðIþ �s�mÞ,

þ1 otherwise.

�
ð23Þ

The main aim of the paper [4] was to study the minimization for (22) and (23).

As noted by the authors in [4], the existence of a solution can only be expected for

very special boundary conditions, i.e. affine boundary conditions (Dirichlet

boundary conditions affinely depending on the positions of boundary points in the
reference configuration) of the form R(Iþ �s�m)X; generally a compensating

boundary layer is formed. The reason is that the discrete nature of the crystalline slip

system makes the energy density Wep not quasi-convex, which in turn favors the
spontaneous formation of a microstructure. Typically, if affine boundary conditions

are prescribed, the minimization of the energy functional J(x) in (22) leads to highly

oscillatory behavior of minimizing sequences and its minimum cannot be reached
due to finer and finer oscillations of F, cf. [11]. This may also happen if loading is

applied to the specimen. This non-physical effect indicates that the proposed model,

on which (22) and (23) are based, does not reflect correctly the observed phenomena

(the observed shear and kink bands have a finite wavelength, and the energy of the
banded crystal has a definite value). Moreover, from the microscopic point of view it

is desirable to know the character of the oscillations; at a macroscopic level,

boundary conditions imposed by the experimental setup have to be matched.
The mathematical study of the character of the oscillations and the problem of

the boundary conditions is based on the concept of quasi-convexity (the effects

controlling the refinement of the microstructure are discussed in the following

section). In the constitutive assumption (23) the density Wep is replaced by a quasi-
convex envelope Wqc; the envelope Wqc is defined as the largest quasi-convex

function which is less than or equal to Wep, cf. Figure 2 (for a more detailed

presentation of the concept of quasi-convexity see the Appendix). Minimization of
J(x) corresponds to the microstructure formed, and the minimizer of the functional
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Jqc(x) related to Wqc characterizes the average macroscopic properties of the

microstructure. The relation between J and Jqc is demonstrated by a minimizing

sequence [12]: for each x, there is a sequence {xj} converging weakly (in a suitable

Sobolev space) to x such that

JqcðxÞ ¼ lim inf
j!1

JðxjÞ: ð24Þ

We refer to Figure 2 for Wep and its quasi-convex envelope Wqc. A minimizing

sequence {xj} can be constructed in the following way. Roughly speaking, an

imposed deformation gradient F such that Wep(F,Fk)¼þ1 can be obtained as the

‘average’ of two rigid-plastic deformations F1 and F2 with finite energy and

rank(F1�F2)¼ 1, i.e. F¼�F1þ (1��)F2 for some volume fraction 05�51. The

position vector field xj(X ) of the minimizing sequence is represented by a lamellar

structure [4]

xjðXÞ ¼ ð�F1 þ ð1� �ÞF2ÞXþ a
1

j
��ð j ðn � Xþ cÞÞ, ð25Þ

where d :¼ 1/j sets the scale of the lamellar structure. The vector a determines the

direction of the structure amplitude and n is the unit normal to the lamellae; they are

related through F1�F2¼ a� n, c represents the phase relation between successive

lamellae, and �(�) is a continuous, periodic, piecewise-linear function of the

argument �¼ (n �Xþ c)/d such that @��/@X� 1¼ 1�� for �2 (0,�), and @��/
@X� 1¼�� for �2 (�, 1). Hence, to accommodate the deformation imposed by the

F1 F2

Figure 2. Non-quasi-convexity of Wep between tensors F1, F2. Wep can be seen as a limit of an
elastoplastic energy density (dotted line) if elastic moduli tend to infinity (solid lines –
considered case); the dashed-dotted line indicates increasing elastic moduli. The quasi-convex
envelope Wqc of Wep between F1 and F2 is depicted by the dashed line.
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boundary conditions the system oscillates between two rigid-plastic deformations

F1 and F2. Indeed, we see that

rxj ðXÞ ¼ �F1 þ ð1� �ÞF2 þ �
0
�ð j ðn � Xþ cÞÞa� n:

As F1�F2¼ a� n we get that rxd (X )2 {F1,F2}. Hence, if Wep(Fi,F0)5þ1 for
i¼ 1, 2 then

WqcðF,F0Þ � �WepðF1,F0Þ þ ð1� �ÞWepðF2,F0Þ5 þ1:

Conti and Theil [4] proved that if we prescribe affine boundary conditions on the
boundary of the domain, i.e. x(X )¼FX for X2 @�, then the deformation given by

(25) is a minimizing sequence if a suitable modification is introduced in the vicinity of
@�. They showed that the magnitude of the energy contribution of this modification

is bounded by a constant times d :¼ 1/j, i.e. it vanishes if the period of the oscillations
decreases. This construction is a main ingredient in their proof that the quasi-convex

envelope Wqc can be reached by laminated microstructures. In general, following
relaxation theory of the calculus of variations, replacing Wep in formula (22) by the
quasi-convex envelope Wqc (see Figure 2) sets up a minimization problem which

possesses a minimizer and describes the limiting behavior of the oscillations if their
length-scale d tends to zero [11]. While the computations of the quasi-convex

envelope always involve affine boundary conditions we may face the non-existence of
a solution to the original problem (23) even if the problem is equipped with loading

by external forces. Namely, given the external forces we solve the relaxed problem
with Wqc instead of Wep. This gives us a deformation field x defined for almost all X

in �. Hence, we then look at F¼rx(X ) for a fixed X and find out the microstructure
corresponding to F. By the result of [4] it is a lamellar structure. Thus, we get a
posteriori a microscopic plastic deformation localized around X. This is even more

pronounced if we consider a finite element approximation of the relaxed problem
using element-wise affine deformations. Then the gradient of x is element-wise

constant, so there is a simple laminated microstructure corresponding to rx on every
element; see Figure 3. As the deformation must be globally continuous we have to

match boundary conditions over element boundaries as in Figures 4 and 5.

A1

A3A2

Figure 3. A specimen with a triangular mesh and rx taking values A1, A2, and A3. On some
elements the microstructure must match affine boundary conditions x(X )¼A1X, or
x(X )¼A2X for X from the element boundary. This creates an energy contribution which
vanishes with the increasing finesse of laminates. In general, there may also be a part of the
specimen where no microstructure appears. These regions are denoted A3.
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The case of shear bands is shown schematically in Figure 4a. The periodicity of

the lamellar structure is d. Analogically, Figure 4b illustrates kink bands where Gi,

i¼ 1, 2, are corresponding deformation gradients and 	 is the volume fraction.
Moreover, as shown in [4], the optimal microstructure is a lamellar structure with

F alternating between F1 :¼F� (1��)a� b where F2 :¼Fþ�a� b, where a unit

vector b is a solution (up to the sign) of jFb?j¼ 1, and a¼Fb? (b? denotes a vector

perpendicular to b). Here F denotes the average deformation gradient determined by

boundary conditions. Consider the following situation.
Let s ¼ ð�1, 1Þ=

ffiffiffi
2
p

and m ¼ ð�1, � 1Þ=
ffiffiffi
2
p

. Let, further, 24�40 be given and

consider a simple shear macroscopic deformation given by x(X )¼FX, where

F ¼
1 2� �

0 1

� �
: ð26Þ

Figure 5. Composition of two basic constructions from Figure 4. The dashed line denotes the
macroscopic deformation.

F1

F2

F1

F2
F1

(a)

μd

(1−μ)d

(b)

(1−λ)d λd

G1 G2 G1 G2

Figure 4. Shear (a) and kink band (b) lamellae with finite periodicity. Each construction
matches affine displacement boundary conditions on two opposite sides. However, refining
this construction leads to lower energies. In the limit for d! 0, the periodicity of lamellar
structure tends to zero. Here rank(F1�F2)¼ rank(G1�G2)¼ 1.
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Then F¼ �/2Iþ (1� �/2)F2, where

F2 ¼
1 2

0 1

� �
: ð27Þ

Notice that F2¼R(I� 2s�m) and that F2� I¼ 2a� b where a¼ (�1, 0) and
b¼ (0, 1). A simple calculation shows that

R ¼
0 1

�1 0

� �
: ð28Þ

Now, if we put � :¼ �/2 we have F¼�Iþ (1��)R(I� 2s�m); then
Wqc(F0,F )5þ1, if det F0¼ 1 and jFsj � 1. Similarly, for some 05	51 put
F> ¼: G ¼ 	Iþ ð1� 	Þ ~RðIþ ~�s�mÞ representing a kink macroscopic deformation
( ~R is a rotation, ~�4 0). Then again Wqc(F0, G)5þ1. The construction of
microstructures arising from shear and kink bands is depicted in Figure 4 for
F1¼G1 :¼ I, F2 :¼R(I� 2�s�m), and G2 :¼ ~RðIþ �s�mÞ. The numbers 1� 	 and
1�� represent volume fractions of the undeformed material.

These two basic constructions can be composed into the structure depicted in
Figure 5.

Remark 3.1: In the case of elastoplastic crystals whereWep is finite and contains the
hardening term c�2y with some c40 and if h40 in Equation (13) then this hardening
term has a convexifying effect on the energy [13]. Indeed, notice that at the time t2,
�2y2 ¼ ð�y1 þ hj�2 � �1jÞ

2, where the quantities with sub-index 1 refer to the previous
time instant t1. Hence, we can rewrite the hardening term as a convex function of �2.
Thus, h40 may prevent the formation of microstructures for larger time intervals.
At the same time softening (h50) may cause the creation of microstructures for large
times even if there is no microstructure at the beginning. Here it is crucial that we
include elastic energy. In the rigid-plastic approximation, however, the hardening has
no convexifying effect on the total energy because it is finite only on a non-convex
set. The same happens for softening, i.e. h50.

4. Discussion

We proposed a mathematically rigorous way to explain the formation of lamellar
microstructures in continuum, rate-independent, single-crystal plasticity restricted by
the assumptions of elastic rigidity and zero hardening. The principal results of the
previous section are symbolically expressed in Figure 5 which is a model
representation of the schema from Figure 1 deduced from experiments. There, the
shear strain is carried by the shear bands and the kink bands adjust the crystal lattice
orientation on average to the applied shear. Our model does not introduce any
length-scale into the problem. Namely, as already mentioned before, finer and finer
lamellae decrease the bulk energy and displacement. Nevertheless, boundary
conditions bring an additional energy contribution which vanishes with the thickness
of the lamellae, d! 0. However, the observations mentioned in the introduction
show that the bands have a well-defined finite width. The reason is that the model
neglects the energy needed to build interface boundaries or the inner structure of
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the bands. In that the shear bands and the kink bands are very different. This
probably provides an answer to the question posed by Mughrabi [3] and recalled in
the introduction.

In the case of the kink bands the rotation R jumps across the kink boundaries
and, hence, the GND density is non-zero there and is arranged in the dislocation
boundaries. According to the classical paper by Read and Shockley [14] the interface
energy per unit area for low-angle boundaries is approximately [Gp/4
(1� �)]
#[A� ln#], where G is the shear modulus, p the lattice parameter, � Poisson’s ratio,
and A was estimated to be 0.23. # is the relative rotation across the boundary in the
scheme of Figure 5 and represents the density of geometrically necessary dislocations
(GND) forming the boundary. In the present context # can be understood as the
GND density tensor ,¼RT curl(RT) introduced in Section 2. We may include the
classical interfacial energy term in our model (23). A simple way would be to penalize
spatial changes in the deformation gradient. The incremental problem corresponding
to (22) then becomes

JkðxÞ ¼

Z
�

Wepðrx;F0Þ þWintð,Þ
� �

dV, ð29Þ

where

Wintð,Þ ¼
½Gp=4
ð1� �Þ�j,j½A� ln j,j� if j,j40 and xðxÞ ¼ RðxÞðIþ �ðxÞs�mÞ,

0 otherwise.

�

However, this interfacial energy still does not have to guarantee the existence of a
solution due to the lack of full information about r�.

Another simple way would be to penalize spatial changes in the deformation
gradient in the incremental problem corresponding to (22), for instance as,

JkðxÞ ¼

Z
�

fWepðrx;F0Þ þ �jr
2xj2gdV, ð30Þ

where rx¼R(Iþ �s�m), x(X )¼FX for some F with the unit determinant and
jFsj51 on the boundary, and �40. The main feature of this model of the interfacial
energy is that a solution exists in the appropriate Sobolev space despite the fact that
Wep is not quasi-convex. The reason is that the first gradient of a minimizing
sequence converges strongly and Wep is lower semi-continuous. Thus, any solution
inevitably has a finite number of smooth interfaces whose number decreases as �
grows. This reflects two competing mechanisms in the problem. The increasing
number of interfaces decreases the Wep term in (29) while it makes the other term
grow. We refer to [12] for another approach to include interfacial energy in the case
of deformation theory of plasticity with a double-slip system. Another attempt to
introduce an interfacial energy into the energy minimization problem was under-
taken in [15] in the case of dislocation cell formation in a symmetric double slip.

The mechanism controlling the thickness of the shear bands is very different.
In the case of shear bands the rotation is R¼ I, and the GNDs are not formed.
However, there is a need for an energy to build the inner structure of the shear bands.
The problem of the relation of the inner structure to the thickness of the shear band
lamellae and their density was studied in [16,17]. The study concerned mature
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persistent slip bands (PSBs) occurring in cyclically deformed metal single crystals (to
our knowledge, analogous studies for sheet structures have not yet been done). The
wavelength of their spontaneously formed ladder structure of dipolar dislocation
walls and channels represents an intrinsic scale. The thickness of the PSB lamellae is
controlled by inhomogeneous internal stresses created by the ladder structure of the
bands. The applied cyclic shear strain with a given amplitude could be carried
equally by a higher density of thinner PSBs or by a lower density of thicker PSBs.
The energy of the internal stress of a PSB can be divided into the part within the PSB
lamella and the part in the neighboring matrix structure. If each PSB of a certain
thickness is split, e.g. into two PSBs, the volume of the PSB lamellae is the same
and the energy in the lamellae decreases due to smaller thickness. The reason is that
the normal stress component in the direction perpendicular to the PSBs increases
with the square of the lamella thickness. On the other hand, the energy of the parts of
the matrix neighboring to the PSBs increases as their total volume is doubled by the
splitting. The explanation is that the internal stress energy of these parts per unit
volume is nearly the same. It depends mainly on the shear stress component which is
not influenced by the lamella splitting. Hence, the energy density increases to infinity
when the thickness approaches zero. In the opposite limit of an infinite thickness the
energy density also reaches infinity due to the increase of the internal stress in the
thicker PSB lamellae. The observed thickness is a compromise between these two
tendencies. The detailed computation confirming the above conclusion is given in
[16,17]. However, to incorporate the internal structure mechanism in the current
models of crystal plasticity and their energetic solution is a challenging problem and
requires further research.

Acknowledgements

This work was supported by the grants VZ6840770021 (MŠMT ČR) and A100750802
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Note

1. In detail: L ¼ _FF�1 ¼ R _F pðF pÞ
�1RT þ _RRT, where _F pðF pÞ

�1 is the rate of plastic
distortion in the reference lattice, R _F pðF pÞ

�1RT ¼ L p is the rate of plastic distortion
rotated with the lattice into the current configuration, and _RRT is the lattice spin.
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[17] V. Gregor, J. Kratochvı́l and M. Saxlová, Width and density of persistent slip bands as

a consequence of deformation mesostructure, in EUROMECH – MECAMAT on

Mechanics of Materials with Instrinsic Length Scale, Magdeburg, Germany, February

23–26, 1998, A. Bertram and F. Sidoroff, eds., Otto-von-Guericke University,

Magdeburg, 1998, p.174.

Appendix. Quasi-convex functions

Consider a function f :Rd	d
!R[ {þ1}. We say that f is quasi-convex if for a smooth

bounded domain O
R
d it holds that for every � 2 C10 ðO; R

d
Þ and all A2R

d	d (jOj denotes
the Lebesgue measure of O)

f ðAÞjOj �

Z
O

f ðAþ r�ð�ÞÞd�: ð31Þ

If 0� f(A)�C(1þ jAjp) for some C40 then quasi-convexity is necessary and sufficient for
weak lower semi-continuity of the functional I(u)¼

R
� f(ru(�))d� defined for u2W1,p(�; R

d).
Here W1,p(�; R

d) is the space of functions integrable together with their gradient to the p-th
power. The weak lower semi-continuity is a key ingredient when one proves the existence of a
minimizer to I. If f is not quasi-convex we define its quasi-convexification as

�f ðAÞ :¼ inf
�2C1

0
ðO;Rd

Þ

¼
1

jOj

Z
O

f ðAþ r�ð�ÞÞd�:

Lack of quasi-convexity typically brings finer and finer oscillations to the
minimizing sequence of I. Replacing f by �f in the definition of I defines the so-called relaxed
problem which is mathematically well-posed and correctly describes macroscopic physical
quantities. This the reason why we look for the quasi-convex envelope of the (microscopic)
energy density.

Quasi-convexity is very difficult to verify, in general. However, convex functions are
quasi-convex and it is also known that quasi-convex functions are convex along lines with
points which differ by a rank-1 matrix. That is why laminates, i.e. constructions with piecewise
affine deformations with rank-1 jumps in the gradients, are used to approximate the quasi-
convex envelope. Nevertheless, quasi-convexity is a much weaker condition than convexity.
We refer, e.g. to [11] for more details.

3742 J. Kratochvı́l et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
r
u
z
i
k
,
 
M
a
r
t
i
n
]
 
A
t
:
 
0
7
:
5
0
 
2
3
 
A
u
g
u
s
t
 
2
0
1
0


